
Richard Johnson
ToorCon San Diego 2016

Go Speed Tracer

Richard Johnson
ToorCon San Diego 2016

Introduct ion

• Richard Johnson
– Research Manager
– Cisco Talos

• Team
– Aleksandar Nikolich
– Ali Rizvi-Santiago
– Marcin Noga
– Piotr Bania
– Tyler Bohan
– Yves Younan

• Special Contributor
– Andrea Allevi

• Talos Vulndev
– Third party vulnerability research

• 170 bug finds in last 12 months

– Microsoft
– Apple
– Oracle
– Adobe
– Google
– IBM, HP, Intel
– 7zip, libarchive, NTP

– Security tool development
• Fuzzers, Crash Triage

– Mitigation development
• FreeSentry

Introduct ion

• Agenda
– Tracing Applications
– Guided Fuzzing
– Binary Translation
– Hardware Tracing

• Goals
– Understand the attributes required for optimal guided fuzzing
– Identify areas that can be optimized today
– Deliver performant and reusable tracing engines

Appl icat ions

• Software Engineering
– Performance Monitoring
– Unit Testing

• Malware Analysis
– Unpacking
– Runtime behavior
– Sandboxing

• Mitigations
– Shadow Stacks
– Memory Safety checkers

Appl icat ions

• Software Security
– Corpus distillation

• Minimal set of inputs to reach desired conditions

– Guided fuzzing
• Automated refinement / genetic mutation

– Crash analysis
• Crash bucketing
• Graph slicing
• Root cause determination

– Interactive Debugging

Trac ing Eng ines

• OS Provided APIs
– Debuggers

• ptrace
• dbgeng
• signals

– Hook points
• Linux LTT(ng)
• Linux perf
• Windows Nirvana
• Windows AppVerifier
• Windows Shim Engine

– Performance counters
• Linux perf
• Windows PDH

Check out Alex Ionescu’s

RECON 2015 talk

Trac ing Eng ines

• Binary Instrumentation
– Compiler plugins

• gcc-gcov
• llvm-cov

– Binary translation
• Valgrind
• DynamoRIO
• Pin
• DynInst
• Frida and others
• ...

Trac ing Engines

• Native Hardware Support
– Single Step / Breakpoint
– Intel Branch Trace Flag
– Intel Last Branch Record
– Intel Branch Trace Store
– Intel Processor Trace
– ARM CoreSight

Guided Fuzzing

Evolut ionary Test ing

• Early work was whitebox testing
• Source code allowed graph analysis prior to testing
• Fitness based on distance from defined target
• Complex fitness landscape

– Difficult to define properties that will get from A to B

• Applications were not security specific
– Safety critical system DoS

Guided Fuzz ing

• Incrementally better mutational dumb fuzzing
• Trace while fuzzing and provide feedback signal
• Evolutionary algorithms

– Assess fitness of current input
– Manage a pool of possible inputs

• Focused on security bugs

S idewinder

• Embleton, Sparks, Cunningham 2006

• Features
– Simple genetic algorithm approach

• crossover, mutation, fitness

– Mutated context free grammar
instead of sample fuzzing

– Markov process for fitness
• Analyzes probability of path taken by sample

– Block coverage via debugger API
• Reduced overhead by focusing on subgraphs

S idewinder

• Embleton, Sparks, Cunningham 2006

• Contributions
– Genetic algorithms for fuzzing
– Markov process for fitness
– System allows selection of target code

locations

• Observations
– Never opensourced
– Interesting concepts not duplicated

Evolut ionary Fuzz ing System

• Jared DeMott 2007

• Features
– Block coverage via Process Stalker

• Windows Debug API
• Intel BTF

– Stored trace results in SQL database
• Lots of variables required structured storage

– Traditional genetic programming techniques
• Code coverage + diversity for fitness
• Sessions
• Pools
• Crossover
• Mutation

Evolut ionary Fuzz ing System

• Jared DeMott 2007

• Contributions
– First opensource implementation of guided fuzzing
– Evaluated function vs block tracing

• For large programs found function tracing was equally effective
• Likely an artifact of doing text based protocols

• Observations
– Academic

• Approach was too closely tied to traditional genetic algorithms
• Not enough attention to performance or real world targets
• Only targeted text protocols

Amerc ian Fuzzy Lop

• Michal Zalewski 2013
– Bunny The Fuzzer 2007

• Features
– Block coverage via compile time instrumentation
– Simplified approach to genetic algorithm

• Edge transitions are encoded as tuple and tracked in global map
• Includes coverage and frequency

– Uses variety of traditional mutation fuzzing strategies
– Dictionaries of tokens/constants
– First practical high performance guided fuzzer
– Helper tools for minimizing test cases and corpus
– Attempts to be idiot proof

Amerc ian Fuzzy Lop

• Michal Zalewski 2013
– Bunny The Fuzzer 2007

• Contributions
– Tracks edge transitions

• Not just block entry

– Global coverage map
• Generation tracking

– Fork server
• Reduce fuzz target initialization

– Persistent mode fuzzing
– Builds corpus of unique inputs

reusable in other workflows

Amerc ian Fuzzy Lop

• Michal Zalewski 2013
– Bunny The Fuzzer 2007

• Observations
– KISS works when applied to guided fuzzing
– Performance top level priority in design

• Source instrumentation can't be beat
• Evolutionary system hard to beat without greatly increasing complexity / cost

– Simple to use, finds tons of bugs
– Fostered a user community

• Developer contributions somewhat difficult

– Current state of the art due to good engineering and feature set
– Only mutational fuzzer system to have many third-party contributions

• Binary support via QEMU and Dyninst
• More robust compiler instrumentations, ASAN support
• Parallelization, client/server targeting

hong gfuzz

• Robert Swiecki 2010
– Guided fuzzing added in 2015

• Features
– Block coverage

• Hardware performance counters
• ASanCoverage

– Bloom filter for trace recording
– User-supplied mutation functions
– Linux, FreeBSD, OSX, Cygwin support

• Contributions
– First guided fuzzer to focus on hardware tracing support

• Observations
– Naive seed selection for most algorithms, only the elite survive (OTTES)

• Some modes use bloom filter

– Easy to extend, active development

Choronzon

• Features
– Brings back specific genetic programming concepts
– Contains strategies for dealing with high level input structure

• Chunk based
• Hierarchical
• Containers

– Format aware serialization functionality
– Uses DBI engines for block coverage (PIN / DynamoRIO)
– Attempts to be cross-platform

• Contributions
– Reintroduction of more complex genetic algorithms
– Robust handling of complex inputs through user supplied serialization routines

• Observations
– Performance not a focus

Honorable ment ions

• autodafe
– Martin Vuagnoux 2004
– First generation guided fuzzer using pattern matching via API hooks

• Blind Code Coverage Fuzzer
– Joxean Koret 2014
– Uses off-the-shelf components to assemble a guided fuzzer

• radamsa, zzuf, custom mutators
• drcov, COSEINC RunTracer for coverage

• covFuzz
– Atte Kettunen 2015
– Simple node.js server for guided fuzzing
– custom fuzzers, ASanCoverage

Guided Fuzz ing

• Required
– Fast tracing engine

• Block based granularity

– Fast logging
• Memory resident coverage map

– Fast evolutionary algorithm
• Minimum of global population map, pool diversity

• Desired
– Portable
– Easy to use
– Helper tools
– Grammar detection

• AFL and Honggfuzz still most practical options

Binary Translation

Binary Trans lat ion

• Binary translation is a robust program modification technique
– JIT for hardware ISAs

• General overview is straightforward
– Copy code to cache for translation
– Insert instructions to modify original binary
– Link blocks into traces

• Performance comes from smart trace creation
– Originally profiling locations for hot trace
– Early optimizations in Dynamo from HP

• Next Executing Tail
• Traces begin at backedge or other trace exit

– Ongoing optimization work happens here
• VMware - Early Exit guided

Binary Trans lat ion

• Advantages
– Supported on most mainstream OS/archs
– Can be faster than hardware tracing
– Can easily be targeted at certain parts of code
– Can be tuned for specific applications

• Disadvantages
– Performance overhead

• Introduces additional context switch

– ISA compatibility not guarenteed
– Not always robust against detection or escape

Valgr ind

• Obligatory slide
• Lots of deep inspection tools
• VEX IR is well suited for security applications

• Slow and Linux only, DynamoRIO good replacement

• Many cool tools already exist
– Flayer
– Memgrind

Pin

• “DBT with training wheels”
• Features

– Trace granularity instrumentation
• Begin at branch targets, end at indirect branch

– Block/instruction level hooking supported
– Higher level C++ API w/ helper routines
– Closed source

• Observations
– Delaying instrumentation until trace generation is slower
– Seems most popular with casual adventurers
– Limited inlining support
– Less tuning options
– Cannot observe blocks added to cache so ‘hit trace’ not possible

Pin

• Example

VOID Trace(TRACE trace, VOID *v)
{

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl
= BBL_Next(bbl))

{
BBL_InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(basic_block_hook),

IARG_FAST_ANALYSIS_CALL, IARG_END);
}

}

DynamoRIO

• “A connoisseur's DBT”
• Features

– Block level instrumentation
• Blocks are directly copied into code cache

– Direct modification of IL possible
– Portable

• Linux, Windows, Android
• x86/x64, ARM

– C API / BSD Licensed (since 2009)

• Observations
– Much more flexible for block level instrumentation
– Performance is a priority, Windows is a priority
– Powerful tools like Dr Memory

• Shadow memory, taint tracking
• Twice as fast as Valgrind memcheck

DynamoRIO

• Example

event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
bool for_trace, bool translating)

{
instr_t *instr, *first = instrlist_first(bb);
uint flags;
/* Our inc can go anywhere, so find a spot where flags are dead. */
for (instr = first; instr != NULL; instr = instr_get_next(instr))
{

flags = instr_get_arith_flags(instr);
/* OP_inc doesn't write CF but not worth distinguishing */
if (TESTALL(EFLAGS_WRITE_6, flags) && !TESTANY(EFLAGS_READ_6,

flags))
break;

}
…

DynamoRIO

• Example

if (instr == NULL)
dr_save_arith_flags(drcontext, bb, first, SPILL_SLOT_1);

instrlist_meta_preinsert(bb,
(instr == NULL) ? first : instr,
INSTR_CREATE_inc(drcontext,

OPND_CREATE_ABSMEM((byte *)&global_count, OPSZ_4)));

if (instr == NULL)
dr_restore_arith_flags(drcontext, bb, first, SPILL_SLOT_1);

return DR_EMIT_DEFAULT;
}

DynInst

• “Static rewriting IS possible!”
• Features

– Static rewriting support
• Dynamically linked binaries only
• Eliminates issues with instruction cache misses common to DBT engines

– Function level analysis
• Tools must manually walk Dyninst provided CFG to instrument blocks

– Modular C++ API / LGPL

• Observations
– Fastest binary instrumentation out there
– Development is slow

• Patches we sent in for PE relocation support still not merged

– Building Dyninst is NP-Hard
• Use my Dockerfile on github.com/talos-vulndev/afl-dyninst

DynInst

• Example

bool insertBBCallback(BPatch_binaryEdit * appBin, BPatch_function * curFunc,
char *funcName, BPatch_function * instBBIncFunc,int *bbIndex)

{
unsigned short randID;
BPatch_flowGraph *appCFG = curFunc->getCFG ();
BPatch_Set <BPatch_basicBlock *> allBlocks;
BPatch_Set <BPatch_basicBlock *>::iterator iter;
for (iter = allBlocks.begin (); iter != allBlocks.end (); iter++)
{

unsigned long address = (*iter)->getStartAddress ();

randID = rand() % USHRT_MAX;
BPatch_Vector <BPatch_snippet *> instArgs;
BPatch_constExpr bbId (randID);
instArgs.push_back (&bbId);

…

DynInst

• Example

…
BPatch_point *bbEntry = (*iter)->findEntryPoint();
BPatch_funcCallExpr instIncExpr (*instBBIncFunc, instArgs);
BPatchSnippetHandle *handle =

appBin->insertSnippet (instIncExpr, *bbEntry, BPatch_callBefore,
BPatch_lastSnippet);

(*bbIndex)++;
}
return true;

}

Tuning B inary Trans lat ion

• Only instrument indirect branches
• Delay instrumentation until input is seen
• Only instrument threads that access the data
• Move instrumentation logic to analysis routines

– Some APIs provide IF-THEN-ELSE analysis with optimization

• Avoid trampolines
– Be aware of code locality and instruction cache
– Directly inline instructions, modify AST if possible

• Inject a fork server if repeatedly executing DBT
– See our turbotrace tool

Hardware Tracing

CPU Event Monitor ing

• Modern CPUs contain Performance Monitoring Units (PMU)
• Model Specific Registers (MSR) used for configuration

– Requires privileged execution (kernel or better) to access

• Types
– Event Counters

• Polled on-demand

– Event Sampling (non-precise)
• Interrupts triggered when counters hit modulus value

– Precise Event Sampling (PEBS)
• Uses 'Debug Store'
• Physical memory buffers
• Interrupt when full

• Use Linux perf / pmu-tools to experiment

Interrupt Programming

• Interrupts - low level messaging system for system devices
– CPU Exceptions

• GPF, SINGLE_STEP

– Hardware Interrupts
• Memory mapped or IRQ based
• All Device I/O

– Software Interrupts
• System calls (int 0x80)
• Breakpoints

• OS/hypervisor drivers required to configure interrupt handlers
– Privileged registers or interrupt vector tables

Interrupt Programming

• Interrupt Service Routines (ISR)
– Registered by operating systems and drivers as callbacks

• CPU checks interrupt flag (IF) register after each instruction
– cli and sti instructions control whether IF is checked

• CPU indexes the interrupt vector table to find appropriate handler
– Context stored / restored while servicing interrupt

• Historically Familiar Interrupts:
– int 1 - Single Step (TF)
– int 3 - Single opcode, specifically designed for debugging
– int 10h - Any Demosceners?
– int 24h - DOS Critical Error Handler

Who remembers:
I/O Device Specific Error Message
Abort, Retry, Ignore, Fail?

Interrupt Programming

• Programmer checklist
– Memory must not be swapped
– Use static variables if necessary
– Must wrap functions with assembly

• disable interrupts
• push all registers
• call interrupt handler
• pop all registers
• iretd

I t s a Trap

• Single Stepping
– Enabled by setting the Trap Flag
– After each instruction, CPU checks flag and fires exception if enabled
– Accessible from userspace

• Branch Trace Flag
– Modifies single step behavior to trap on branch
– Single flag in IA32_DEBUGCTL MSR
– Requires kernel privileges to write to MSR
– Windows includes a mapping from DR7 to set MSR

– SS/BTF traps are slooooooooow, not applicable for vulnerability research

IA32_DEBUGCTL Register

– MSR Address 0x1d9
• LBR [0] - Enable Last Branch Record mechanism
• BTF [1] - when enabled with TF in EFLAGS does single stepping on branches
• TR [6] - enables Tracing (sending BTMs to system bus)
• BTS [7] - enables sending BTMs to memory buffer from system bus
• BTINT [8] - full buffer generates interrupt otherwise circular write
• BTS_OFF_OS [9] - does not count for priv. level 0
• BTS_OFF_USR [10] - does not count for priv. level 1,2,3
• FRZ_LBRS_ON_PMI [11] - freeze LBR stack on a PMI
• FRZ_PERFMON_ON_PMI [12] - disable all performance counters on a PMI
• UNCORE_PMI_EN [13] - uncore counter interrupt generation
• SMM_FRZ [14] - event counters are frozen during SMM

Branch Trace Store

• First generation hardware
branch tracing via PMU

• Allows configurable memory
buffer for trace storage

• MSR_IA32_DS_AREA MSR
defines storage location

• DS_AREA_RECORD stored for
each branch

struct DS_AREA {
u64 bts_buffer_base;
u64 bts_index;
u64 bts_absolute_maximum;
u64 bts_interrupt_threshold;
u64 pebs_buffer_base;
u64 pebs_index;
u64 pebs_absolute_maximum;
u64 pebs_interrupt_threshold;
u64 pebs_event_reset[4];

};

struct DS_AREA_RECORD {
u64 flags;
u64 ip;
u64 regs[16];
u64 status;
u64 dla;
u64 dse;
u64 lat;

};

Branch Trace Store

Branch Trace Store

• Branches in LBR registers spill to DS_AREA
• Interrupts only when buffer is full
• Steps to enable BTS

– Allocate memory and set MSR_IA32_DS_AREA
– Add interrupt handler to IDT
– Register interrupt vector with APIC

• apic_write(APIC_LVTPC, pebs_vector);

– Select events with MSR_IA32_EVNTSEL0
• EVTSEL_EN | EVTSEL_USR | EVTSEL_OS

– Enable PEBS mode with MSR_IA32_PEBS_ENABLE
– Enable CPU perf recording with MSR_IA32_GLOBAL_CTRL

• Significantly faster than BTF
• Still impractical for high speed tracing

Inte l Processor Trace

• Next generation hardware tracing support
– Introduced in Broadwell/Skylake architecture
– Per-hardware tracing thread

• Goal: full system branch tracing with 5-15% overhead

• Software support available in
– Linux 4.1+ perf subsystem
– Standalone Linux reference driver simple-pt
– Intel VTune / System Studio**

• Remote debugging only

– Talos IntelPT driver!
• Windows localhost high speed hardware tracing FTW!

Inte l Processor Trace

• Features
– Can trace *SMM, HyperVisor, Kernel, Userspace [CPL -2 to 3]
– Logs directly to physical memory

• Bypasses CPU cache and eliminates TLB cache misses
• Can be a contiguous segment or a set of ranges
• Ringbuffer snapshot or interrupt mode supported

– Minimal log format
• One bit per conditional branch
• Only indirect branches log dest address
• Interrupts log source and destination
• Decoding log requires original binaries and memory map

– Filter logging based on CR3
– Linux can automatically add log to coredump
– GDB Support

Inte l Processor Trace

• 90+ pages in Intel
Software Developer
Manuals

• Randomly flipping
bits doesn’t work
here

• Check with CPUID
• EAX = 0x14 - Intel Processor Trace
• EBX

– Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.

– Bit 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
– Bit 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs

across warm reset.
– Bit 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets.

• ECX
– Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output

scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
– Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the

MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
– Bit 02: If 1, Indicates support of Single-Range Output scheme.
– Bit 03: If 1, Indicates support of output to Trace Transport subsystem.
– Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base

component

• Packet Generation (ECX = 1)
• EAX

– Bits 2:0: Number of configurable Address Ranges for filtering.
– Bit 31:16: Bitmap of supported MTC period encodings

• EBX
– Bits 15-0: Bitmap of supported Cycle Threshold value encodings
– Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

Inte l Processor Trace (for programmers)

• Hardware support detection
– CPUID with leaf 0x7 indicates support for Intel PT
– If supported, CPUID with leaf 0x14 can return the supported PT features

• Trace Record Filtering
– Code Privileged Level (CPL) - kernel vs userspace
– PML4 Page Table – single process / CR3 (page-table) filtering
– Instruction Pointer – up to 4 ranges of addresses can be specified

• Log Output Configuration
– Single range
– Table of Physical Addresses (ToPA)

Inte l Processor Trace (for programmers)

• Single Buffer Trace Logging
– Circular or Interrupt modes (Hardware logging support)
– Reserve memory – MmAllocateContiguousMemory (Windows Drivers)
– Set the proper MSRs

• MSR_IA32_RTIT_OUTPUT_BASE
• MSR_IA32_RTIT_OUTPUT_MASK_PTRS

– Start the Tracing setting the “TraceEn” flag in the control register
– Processor logs to in a circular-manner unless interrupt flag configured

Inte l Processor Trace (for programmers)

• Table of Physical Address (ToPA) Trace Logging
– For large traces, non-contiguous physical memory must be used
– ToPA is compatible with Windows Memory Descriptor List (MDL)
– MDL is a Windows data structure for tracking physical->linear mappings

– ToPA is compatible with Windows MDL data structure!

// Grab the physical address:
PHYSICAL_ADDRESS physAddr = MmGetPhysicalAddress(lpBuffVa);
perCpuData.u.Simple.lpTraceBuffPhysAddr = (ULONG_PTR)physAddr.QuadPart;

// Allocate the relative MDL
PMDL pPtMdl = IoAllocateMdl(lpBuffVa, (ULONG)perCpuData.qwBuffSize, FALSE, FALSE, NULL);
if (pPtMdl) perCpuData.pTraceMdl = pPtMdl;

Inte l Processor Trace

Complex log format - decode with opensource libipt library!

Inte l Processor Trace (for programmers)

• Packet Types
– Packet Stream Boundary (PSB)

• Heartbeat packet generated at regular intervals (configurable)

– Paging Information (PIP)
• Notifcation of CR3 Page Table changes

– Timing (TSC, MTC & CYC)
• Useful for wall-clock comparisons or synchronization of logs across CPU threads

– Control Flow (TNT, TIP, FUP)
• TNT – Taken/Not-Taken for conditional branches
• TIP – Taken IP address for indirect branches
• FUP – Flow Update

Inte l Processor Trace

Inte l Processor Trace

• How to use: Linux perf tools (apt: linux-tools-common)

$ perf list | grep intel_pt
intel_pt// [Kernel PMU event]

$ perf record -e intel_pt//u date
Sun Oct 11 11:35:07 EDT 2015
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.027 MB perf.data]

$ perf report
...
Samples: 1 of event 'instructions:u'
Event count (approx.): 157207
#
Overhead Command Shared Object Symbol
........
#

100.00% date libc-2.21.so [.] _nl_intern_locale_data
|
---_nl_intern_locale_data

_nl_load_locale_from_archive
_nl_find_locale
setlocale

...

Inte l Processor Trace

• How to use: simple-pt reference driver

% sptcmd -c tcall taskset -c 0 ./tcall
cpu 0 offset 1027688, 1003 KB, writing to ptout.0
...
Wrote sideband to ptout.sideband
% sptdecode --sideband ptout.sideband --pt ptout.0 | less
TIME DELTA INSNs OPERATION
frequency 32
0 [+0] [+ 1] _dl_aux_init+436

[+ 6] __libc_start_main+455 -> _dl_discover_osversio
n
...

[+ 13] __libc_start_main+446 -> main
[+ 9] main+22 -> f1
[+ 4] f1+9 -> f2
[+ 2] f1+19 -> f2
[+ 5] main+22 -> f1
[+ 4] f1+9 -> f2
[+ 2] f1+19 -> f2
[+ 5] main+22 -> f1

...

Inte l Processor Trace

• Talos IntelPT driver

struct PER_PROCESSOR_PT_DATA {
LPVOID lpTraceBuffVa; // + 0x00 - VA Pointer to a contiguous memory buffer
ULONG_PTR lpTraceBuffPhysAddr; // + 0x08 - The physical address of the contiguous memory

buffer
DWORD dwBuffSize; // + 0x10 - The physical buffer size
ULONG_PTR lpTargetProcCr3; // + 0x18 - The process to monitor CR3

};

Inte l Processor Trace

• Talos IntelPT driver

struct INTEL_PT_CAPABILITIES {
BOOLEAN bCr3Filtering : 1; // [0] - CR3 Filtering Support (Indicates that

// IA32_RTIT_CTL.CR3Filter can be set to 1)
BOOLEAN bConfPsbAndCycSupported : 1; // [1] - Configurable PSB and Cycle-Accurate Mode
BOOLEAN bIpFiltering : 1; // [2] - IP Filtering and TraceStop supported, and

// Preserve Intel PT MSRs across warm reset
BOOLEAN bMtcSupport : 1; // [3] - IA32_RTIT_CTL.MTCEn can be set to 1, and MTC

// packets will be generated (section 36.2.5)
BOOLEAN bTopaOutput : 1; // [4] - Utilize the ToPA output scheme
BOOLEAN bTopaMultipleEntries : 1; // [5] - ToPA tables maximum allowed (MaskOrTableOffset)

...

Inte l Processor Trace

• Talos IntelPT driver

BOOLEAN bSingleRangeSupport : 1; // [6] - Single-Range Output Supported
BOOLEAN bTransportOutputSupport : 1; // [7] - Output to Trace Transport Subsystem Supported

// (Setting IA32_RTIT_CTL.FabricEn to 1 is supported)
BOOLEAN bIpPcksAreLip : 1; // [8] - IP Payloads are LIP
BYTE numOfAddrRanges; // + 0x01 - Number of Address Ranges
SHORT mtcPeriodBmp; // + 0x02 - Bitmap of supported MTC Period Encodings
SHORT cycThresholdBmp; // + 0x04 - Bitmap of supported Cycle Threshold values
SHORT psbFreqBmp; // + 0x06 - Bitmap of supported Configurable PSB

Frequency encoding
};

Inte l Processor Trace

• Talos IntelPT driver

// Write the target CR3 value
__writemsr(MSR_IA32_RTIT_CR3_MATCH, targetCr3);

// Start tracing:
rtitCtlDesc.Fields.CR3Filter = 1;
rtitCtlDesc.Fields.FabricEn = 0;
rtitCtlDesc.Fields.Os = 0;
rtitCtlDesc.Fields.User = 1; // Trace the user mode process
rtitCtlDesc.Fields.ToPA = 0; // We use the single-range output scheme
rtitCtlDesc.Fields.BranchEn = 1;
//if (ptCap.bMtcSupport) {
// rtitCtlDesc.Fields.MTCEn = 1;
// rtitCtlDesc.Fields.MTCFreq = 10;
//}
rtitCtlDesc.Fields.TSCEn = 1;
rtitCtlDesc.Fields.TraceEn = 1; // Switch the tracing to ON dude :-)
__writemsr(MSR_IA32_RTIT_CTL, rtitCtlDesc.All);

Inte l Processor Trace

• Talos IntelPT driver

C:\code\intelpt>instdrv.exe /I windowsptdriver.sys
C:\code\intelpt>testintelpt.exe c:\windows\system32\notepad.exe
C:\code\intelpt>..\libipt\ptdump pt_dump.bin | findstr /V pad | more
00000000000006e8 psb
00000000000006fe tsc 4e1ef46cbc
0000000000000708 cbr 1f
000000000000070c psbend
0000000000000716 tsc 4e1ef8afb9
. . .
0000000000000ce0 cbr 1c
0000000000000cf0 tip 2: ????????4d515400
0000000000000cf5 tnt.8 ..!
0000000000000cf8 tip 2: ????????4bb10ca0
0000000000000cfd tnt.8 !!....
0000000000000cfe tnt.8 !
0000000000000d00 tip 2: ????????4d515400
0000000000000d05 tnt.8 ..!
0000000000000d08 tip 2: ????????1a91e4f0
0000000000000d0d tnt.8 !!!!!!

Outro

Conclus ion

• Evoloutionary algorithms have a lot to offer for automation
– https://github.com/talos-vulndev/

• Initial investment in development pays dividends
– Use correct engine for long term deployment
– Designing tracing engines is not for everyone

• Hardware tracing is approaching software performance

• This code is opensource software
– https://github.com/talos-vulndev/

• `

Thank You!

talosintel.com
blog.talosintel.com

@talossecurity

@richinseattle

rjohnson@moflow.org

